CRACKING PROCESS

0
4341

Cracking Process

In petrochemistry, petroleum geology and organic chemistry, cracking is the process whereby complex organic molecules such as kerogens or long-chain hydrocarbons are broken down into simpler molecules such as light hydrocarbons, by the breaking of carbon-carbon bonds in the precursors. The rate of cracking and the end products are strongly dependent on the temperature and presence of catalysts. Cracking is the breakdown of a large alkane into smaller, more useful alkanes and alkenes. Simply put, hydrocarbon cracking is the process of breaking a long-chain of hydrocarbons into short ones. This process might require high temperatures and high pressure. More loosely, outside the field of petroleum chemistry, the term “cracking” is used to describe any type of splitting of molecules under the influence of heat, catalysts and solvents, such as in processes of destructive distillation or pyrolysis. Fluid catalytic cracking produces a high yield of petrol and LPG, while hydrocracking is a major source of jet fuel, Diesel fuel, naphtha, and again yields LPG.
Chemistry

A large number of chemical reactions take place during the cracking process, most of them based on free radicals. Computer simulations aimed at modeling what takes place during steam cracking have included hundreds or even thousands of reactions in their models. The main reactions that take place include:

 Initiation

In these reactions a single molecule breaks apart into two free radicals. Only a small fraction of the feed molecules actually undergo initiation, but these reactions are necessary to produce the free radicals that drive the rest of the reactions. In steam cracking, initiation usually involves breaking a chemical bond between two carbon atoms, rather than the bond between a carbon and a hydrogen atom.

CH3CH3 → 2 CH3•

Hydrogen abstraction

In these reactions a free radical removes a hydrogen atom from another molecule, turning the second molecule into a free radical.

CH3• + CH3CH3 → CH4 + CH3CH2•

Radical decomposition

In these reactions a free radical breaks apart into two molecules, one an alkene, the other a free radical. This is the process that results in alkene products.

CH3CH2• → CH2=CH2 + H•

Radical addition

In these reactions, the reverse of radical decomposition reactions, a radical reacts with an alkene to form a single, larger free radical. These processes are involved in forming the aromatic products that result when heavier feedstocks are used.

CH3CH2• + CH2=CH2 → CH3CH2CH2CH2•

 Termination

In these reactions two free radicals react with each other to produce products that are not free radicals. Two common forms of termination are recombination, where the two radicals combine to form one larger molecule, and disproportionates, where one radical transfers a hydrogen atom to the other, giving an alkene and an alkane.

CH3• + CH3CH2• → CH3CH2CH3

CH3CH2• + CH3CH2• → CH2=CH2 + CH3CH3

Example: cracking butane there are three places where a butane molecule (CH3-CH2-CH2-CH3) might be split. Each has a distinct likelihood:

48%: break at the CH3-CH2 bond.

CH3* / *CH2-CH2-CH3 Ultimately this produces an alkane and an alkene: CH4 + CH2=CH-CH3

38%: break at a CH2-CH2 bond.

CH3-CH2* / *CH2-CH3 Ultimately this produces an alkane and an alkene of different types:

CH3-CH3 + CH2=CH2 14%: break at a terminal C-H bond

H/CH2-CH2-CH2-CH3 Ultimately this produces an alkene and hydrogen gas: CH2=CH-CH2-CH3 + H2

Cracking methodologies

Thermal methods

Thermal cracking was the first category of hydrocarbon cracking to be developed. Thermal cracking is an example of a reaction whose energetic are dominated by entropy (∆S°) rather than by enthalpy (∆H°) in the Gibbs Free Energy equation ∆G°=∆H°-T∆S°. Although the bond dissociation energy D for a carbon-carbon single bond is relatively high (about 375 kJ/mol) and cracking is highly endothermic, the large positive entropy change resulting from the fragmentation of one large molecule into several smaller pieces, together with the extremely high temperature, makes T∆S° term larger than the ∆H° term, thereby favoring the cracking reaction.
Thermal cracking

Modern high-pressure thermal cracking operates at absolute pressures of about 7,000 kPa. An overall process of disproportionate can be observed, where “light”, hydrogen-rich products are formed at the expense of heavier molecules which condense and are depleted of hydrogen. The actual reaction is known as homolytic fission and produces alkenes, which are the basis for the economically important production of polymers. Thermal cracking is currently used to “upgrade” very heavy fractions or to produce light fractions or distillates, burner fuel and/or petroleum coke. Two extremes of the thermal cracking in terms of product range are represented by the high-temperature process called “steam cracking” or pyrolysis (ca. 750 °C to 900 °C or higher) which produces valuable ethylene and other feedstocks for the petrochemical industry, and the milder-temperature delayed coking (ca. 500 °C) which can produce, under the right conditions, valuable needle coke, a highly crystalline petroleum coke used in the production of electrodes for the steel and aluminium industries. William Merriam Burton developed one of the earliest thermal cracking processes in 1912 which operated at 700–750 °F (371–399 °C) and an absolute pressure of 90 psi (620 kPa) and was known as the Burton process. Shortly thereafter, in 1921, C.P. Dubbs, an employee of the Universal Oil Products Company, developed a somewhat more advanced thermal cracking process which operated at 750–860 °F (399–460 °C) and was known as the Dubbs process. The Dubbs process was used extensively by many refineries until the early 1940s when catalytic cracking came into use.

Steam cracking

Steam cracking is a petrochemical process in which saturated hydrocarbons are broken down into smaller, often unsaturated, hydrocarbons. It is the principal industrial method for producing the lighter alkenes (or commonly olefins), including ethene (or ethylene) and propene (or propylene). Steam cracker units are facilities in which a feedstock such as naphtha, liquefied petroleum gas (LPG), ethane, propane or butane is thermally cracked through the use of steam in a bank of pyrolysis furnaces to produce lighter hydrocarbons. The products obtained depend on the composition of the feed, the hydrocarbon-to-steam ratio, and on the cracking temperature and furnace residence time.

In steam cracking, a gaseous or liquid hydrocarbon feed like naphtha, LPG or ethane is diluted with steam and briefly heated in a furnace without the presence of oxygen. Typically, the reaction temperature is very high, at around 850 °C, but the reaction is only allowed to take place very briefly. In modern cracking furnaces, the residence time is reduced to milliseconds to improve yield, resulting in gas velocities up to the speed of sound. After the cracking temperature has been reached, the gas is quickly quenched to stop the reaction in a transfer line heat exchanger or inside a quenching header using quench oil.

The products produced in the reaction depend on the composition of the feed, the hydrocarbon to steam ratio and on the cracking temperature and furnace residence time. Light hydrocarbon feeds such as ethane, LPGs or light naphtha give product streams rich in the lighter alkenes, including ethylene, propylene, and butadiene. Heavier hydrocarbon (full range and heavy naphthas as well as other refinery products) feeds give some of these, but also give products rich in aromatic hydrocarbons and hydrocarbons suitable for inclusion in gasoline or fuel oil.

A higher cracking temperature (also referred to as severity) favors the production of ethene and benzene, whereas lower severity produces higher amounts of propene, C4-hydrocarbons and liquid products. The process also results in the slow deposition of coke, a form of carbon, on the reactor walls. This degrades the efficiency of the reactor, so reaction conditions are designed to minimize this. Nonetheless, a steam cracking furnace can usually only run for a few months at a time between de-cokings. Decokes require the furnace to be isolated from the process and then a flow of steam or a steam/air mixture is passed through the furnace coils. This converts the hard solid carbon layer to carbon monoxide and carbon dioxide. Once this reaction is complete, the furnace can be returned to service.

Hydrocracking

Hydrocracking is a catalytic cracking process assisted by the presence of added hydrogen gas. Unlike a hydrotreater, where hydrogen is used to cleave C-S and C-N bonds, hydrocracking uses hydrogen to break C-C bonds (hydrotreatment is conducted prior to hydrocracking to protect the catalysts in a hydrocracking process).

The products of this process are saturated hydrocarbons; depending on the reaction conditions (temperature, pressure, catalyst activity) these products range from ethane, LPG to heavier hydrocarbons consisting mostly of isoparaffins. Hydrocracking is normally facilitated by a bifunctional catalyst that is capable of rearranging and breaking hydrocarbon chains as well as adding hydrogen to aromatics and olefins to produce naphthenes and alkanes. The major products from hydrocracking are jet fuel and diesel, but low sulphur naphtha fractions and LPG are also produced.

The major products from hydrocracking are jet fuel and diesel, but low sulphur naphtha fractions and LPG are also produced. All these products have a very low content of sulfur and other contaminants. It is very common in Europe and Asia because those regions have high demand for diesel and kerosene. In the US, fluid catalytic cracking is more common because the demand for gasoline is higher. The hydrocracking process depends on the nature of the feedstock and the relative rates of the two competing reactions, hydrogenation and cracking. Heavy aromatic feedstock is converted into lighter products under a wide range of very high pressures (1,000-2,000 psi) and fairly high temperatures (750°-1,500 °F, 400-800 °C), in the presence of hydrogen and special catalysts. The primary functions of hydrogen are, thus:

  1. Preventing the formation of polycyclic aromatic compounds if feedstock has a high paraffinic content,
  2. Reducing tar formation.
  3. Reducing impurities.
  4. Preventing buildup of coke on the catalyst.
  5. Converting sulfur and nitrogen compounds present in the feedstock to hydrogen sulfide and ammonia, and
  6. Achieving high cetane number fuel.

LEAVE A REPLY

Please enter your comment!
Please enter your name here